An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway.

نویسندگان

  • Shozo Fujioka
  • Suguru Takatsuto
  • Shigeo Yoshida
چکیده

The natural occurrence of 22-hydroxylated steroids in cultured Catharanthus roseus cells and in Arabidopsis seedlings was investigated. Using full-scan gas chromatography-mass spectrometry analysis, (22S)-22-hydroxycampesterol (22-OHCR), (22S,24R)-22-hydroxyergost-4-en-3-one (22-OH-4-en-3-one), (22S,24R)-22-hydroxy-5alpha-ergostan-3-one (22-OH-3-one), 6-deoxocathasterone (6-deoxoCT), 3-epi-6-deoxoCT, 28-nor-22-OHCR, 28-nor-22-OH-4-en-3-one, 28-nor-22-OH-3-one, 28-nor-6-deoxoCT, and 3-epi-28-nor-6-deoxoCT were identified. Metabolic experiments with deuterium-labeled 22-OHCR were performed in cultured C. roseus cells and Arabidopsis seedlings (wild type and det2), and the metabolites were analyzed by gas chromatography-mass spectrometry. In both C. roseus cells and wild-type Arabidopsis seedlings, [(2)H(6)]22-OH-4-en-3-one, [(2)H(6)]22-OH-3-one, [(2)H(6)]6-deoxoCT, and [(2)H(6)]3-epi-6-deoxoCT were identified as metabolites of [(2)H(6)]22-OHCR, whereas the major metabolite in det2 seedlings was [(2)H(6)]22-OH-4-en-3-one. Analysis of endogenous levels of these brassinosteroids revealed that det2 accumulates 22-OH-4-en-3-one. The levels of downstream compounds were remarkably reduced compared with the wild type. Exogenously applied 22-OH-3-one and 6-deoxoCT were found to rescue det2 mutant phenotypes, whereas 22-OHCR and 22-OH-4-en-3-one did not. These results substantiate the existence of a new subpathway (22-OHCR --> 22-OH-4-en-3-one --> 22-OH-3-one --> 6-deoxoCT) and reveal that the det2 mutant is defective in the conversion of 22-OH-4-en-3-one to 22-OH-3-one, which leads to brassinolide biosynthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CYP724B2 and CYP90B3 function in the early C-22 hydroxylation steps of brassinosteroid biosynthetic pathway in tomato.

We characterized a new cytochrome P450 monooxygenase (P450), CYP724B2, from tomato (Lycopersicon esculentum). CYP724B2 showed 42% and 62% amino acid sequence identity with Arabidopsis DWARF4/CYP90B1 and rice DWARF11/CYP724B1 respectively. Functional assay of CYP724B2 heterologously expressed in insect cells revealed that CYP724B2 catalyzes C-22 hydroxylation of campesterol, indicating that CYP7...

متن کامل

Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis.

Brassinosteroids (BRs) are steroidal plant hormones that are essential for growth and development. It has been proposed that BRs are synthesized via two parallel pathways, the early and late C-6 oxidation pathways according to the C-6 oxidation status. The tomato (Lycopersicon esculentum) Dwarf gene encodes a cytochrome P450 that has been shown to catalyze the C-6 oxidation of 6-deoxocastastero...

متن کامل

Effect of Exogenous Brassinosteroid Application on Grain Yield, some Physiological Traits and Expression of Genes Related to This Hormone Signaling Pathway in Wheat under Drought Stress

To investigate the effect of exogenous brassinosteroid application on grain yield, catalase, chlorophyll content, membrane mtability index and gene expression of some genes involving in brassinosteroid signaling pathway (BES1 and BRI1) under drought stress, a split-split plot on randomized complete block design with three replications was conducted at the experimental field of Seed and Plant Im...

متن کامل

Antioxidant Effects of Vitamins C and E on the Low-Density Lipoprotein Oxidation Mediated by Myeloperoxidase

Background: Oxidative modification of low-density lipoprotein (LDL) appears to be an early step in the pathogenesis of atherosclerosis. Meanwhile, myeloperoxidase (MPO)-catalyzed reaction is one of the potent pathway for LDL oxidation in vivo. The aim of this study was to evaluate in vitro antioxidant effects of vitamins C and E on LDL oxidation mediated by MPO. Methods: MPO was isolated from f...

متن کامل

The identification of CVP1 reveals a role for sterols in vascular patterning.

Vascular cell axialization refers to the uniform alignment of vascular strands. In the Arabidopsis cotyledon vascular pattern1 (cvp1) mutant, vascular cells are not arranged in parallel files and are misshapen, suggesting that CVP1 has a role in promoting vascular cell polarity and alignment. Characterization of an allelic series of cvp1 mutations revealed additional functions of CVP1 in organ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 130 2  شماره 

صفحات  -

تاریخ انتشار 2002